top of page

Research Labs

Aerospace Controls Laboratory

Research Areas

The Aerospace Controls Laboratory researches topics related to autonomous systems and control design for aircraft, spacecraft, and ground vehicles. Areas of theoretical research include decision-making under uncertainty, path planning, activity and task assignment, estimation and navigation, robust, adaptive, and model predictive control, and machine learning methods.


Director

Jonathan How

Age Lab

Research Areas

The MIT AgeLab was created in 1999 to invent new ideas and creatively translate technologies into practical solutions that improve people's health and enable them to “do things” throughout the lifespan. Equal to the need for ideas and new technologies is the belief that innovations in how products are designed, services are delivered, or policies are implemented are of critical importance to our quality of life tomorrow.

Director

Joseph F. Coughlin

Auto-ID Labs

Research Areas

The Auto-ID Labs are the leading global research network of academic laboratories in the field of Internet of Things. The labs comprise seven of the world’s most renowned research universities located on four different continents. The labs believe that the next generation of the Internet of Things can revolutionize global commerce and provide previously unrealizable consumer benefits. The primary research partner is GS1 – a not-for-profit organization that is renowned for establishing standards for global commerce such as introducing barcodes to the retail industry almost 40 years ago.


Director

Sanjay Sarma

Center for Energy and Environmental Policy Research

Research Areas

Since 1977, the Center for Energy and Environmental Policy Research (CEEPR) has been a focal point for research on energy and environmental policy at MIT. CEEPR promotes rigorous, objective research for improved decision making in government and the private sector, and secures the relevance of its work through close cooperation with industry partners from around the globe. Drawing on the unparalleled resources available at MIT, affiliated faculty and research staff as well as international research associates contribute to the empirical study of a wide range of policy issues related to energy supply, energy demand, and the environment.


Director

Chris Knittel

Center for Ocean Engineering

Research Areas

Today, MIT is at the forefront of ocean science and engineering, with significant efforts in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. In addition, the Naval Construction program provides advanced graduate education on the design of naval ships and vehicles. The Center is a focal point for interdepartmental collaborations, interactions with other MIT schools, as well as outside the Institute.

Director

Michael Triantafyllou

Center for Real Estate, and Sustainable Urbanization Lab

Research Areas

The goal of the Sustainable Urbanization Lab (SUL) is to establish behavioral foundations for urban and environmental planning and policies aimed at sustainable urbanization in the most rapidly urbanizing regions of the world.

The SUL will be defined by three ‘blocks’: two of which are inter-related research themes: Environmental Sustainability and Place-based Policies and Self-Sustaining Urban Growth; the third block, an educational program the China Future City Program, will continue to serve as the teaching and research center of China’s urbanization on MIT campus.

Director

Siqi Zheng

Center for Transportation and Logistics

Research Areas

For more than four decades, the MIT Center for Transportation & Logistics (MIT CTL) has been a world leader in supply chain management education and research. MIT CTL has made significant contributions to supply chain and logistics and has helped numerous companies gain competitive advantage from its cutting-edge research. Launched in 1973, the MIT Center for Transportation & Logistics (CTL) is a dynamic solutions-oriented environment where students, faculty, and industry leaders pool their knowledge and experience to advance supply chain education and research.


Director

Yossi Sheffi

City Form Lab

Research Areas

The City Form Lab at MIT focuses on urban design, planning and real-estate research. We develop new software tools for researching city form; use cutting-edge spatial analysis and statistics to investigate how urban form and land-use developments affect urban mobility and business location choices; and develop creative design and policy solutions for contemporary urban challenges. By bringing together multi-disciplinary urban research expertise and excellence in design, we develop context sensitive and timely insight about the role of urban form in affecting the quality of life in 21st century cities. CFL involves inter-disciplinary researchers and students interested in urban design, planning, transportation, spatial analysis and decision-making.

Director

Andres Sevtsuk

City Science Group

Research Areas

Founded in 1985, the MIT Media Lab is one of the world’s leading research and academic organizations. Unconstrained by traditional disciplines, Media Lab designers, engineers, artists, and scientists strive to create technologies and experiences that enable people to understand and transform their lives, communities, and environments. As part of the MIT Media Lab, the City Science research group proposes that new strategies must be found to create the places where people live and work in addition to the mobility systems that connect them, in order to meet the profound challenges of the future.


Director

Kent Larson

Civic Data Design Lab

Research Areas

The Civic Data Design Lab works with data to understand it for public good. They seek to develop alternative practices which can make the work they do with data and images richer, smarter, more relevant, and more responsive to the needs and interests of citizens traditionally on the margins of policy development. In this practice they experiment with and develop data visualization and collection tools that allow us to highlight urban phenomena. Their methods borrow from the traditions of science and design by using spatial analytics to expose patterns and communicating those results, through design, to new audiences.


Director

Sarah Williams

CoLab

Research Areas

The Community Innovators Lab (CoLab) is a center for planning and development within the MIT Department of Urban Studies and Planning (DUSP). CoLab facilitates the interchange of knowledge and resources between MIT and community organizations. CoLab works with MIT students, faculty,
and technical resources to build collaborations with communities. Together we implement strategies that harness existing community assets and capture value to promote inclusive economic development that is environmentally sustainable, socially just, and deeply democratic. CoLab brings multi-disciplinary
expertise from urban planning, municipal government, business, community media, civil rights advocacy, and community and labor organizing.

Director

Dayna L. Cunningham

Computational and Visual Education (CAVE) Lab

Research Areas

The CAVE lab provides students, researchers, and decision makers with a more intuitive understanding of and access to quantitative methods to support strategic design, tactical planning and operational decision problems in the supply chain and logistics domain and related fields. Based on a newly created physical lab space at MIT CTL equipped with state-of-the-art visualization technology, the lab is developing interactive visual interfaces to data and analytical tools, addressing complex supply chain and logistics problems.

The lab enables research advances in three major domains:

Development, improvement and application of traditional quantitative methods in supply chain, logistics, and transportation decision making (network design, distribution systems, inventory management, risk management, etc.)
Adaptation and application of advanced data science methods (machine learning, network science, etc.) to large and diverse datasets to characterize, understand, predict, and improve the performance of complex supply networks, transportation and logistics systems
Behavioral analysis of human decision making in supply chain management, transportation and logistics in light of interactive visualization being used as a tool to communicate, analyze, and manipulate context- and problem-related information

Director

Matthias Winkenbach

Computer Science and Artificial Intelligence Laboratory (CSAIL)

Research Areas

CSAIL is committed to pioneering new approaches to computing that will bring about positive changes in the way people around the globe live, play, and work. They focus on developing fundamental new technologies, conducting basic research that furthers the field of computing, and inspiring and educating future generations of scientists and technologists. With more than 60 research groups working on hundreds of diverse projects, researchers focus on discovering novel ways to make systems and machines smarter, easier to use, more secure, and more efficient.


Director

Daniela Rus

Connection Science Living Labs

Research Areas

With its novel "Living Labs" paradigm for research in the field, MIT Connection Science brings together interdisciplinary experts to develop, deploy, and test - in actual living environments - new technologies and strategies for safe, trusted, data sharing. MIT is well positioned to take a leadership role in demonstrating not only how organizations can leverage data in the future, but how we collect, manage, and use personal information, from setting appropriate privacy policies to demonstrating systems that can implement it in practice.


Director

Sandy Pentland

Data Science Lab

Research Areas

The Data Science Lab develops analytic techniques and tools for improving decision making in environments that involve uncertainty and require statistical learning. They achieve this vision by exploring theoretical foundations of operational problems and applying them in the development of algorithms that integrate machine learning and stochastic or deterministic optimization techniques. Their methods have been implemented by a large number of companies across a variety of industries such as Airlines, Insurance, Manufacturing and Retail.


Director

David Simchi-Levi

Electric Aircraft Initiative

Research Areas

The MIT Electric Aircraft Initiative draws together efforts across MIT aimed at long-term research on electric aircraft. Research spans fundamental propulsion technology development for small drones through to overall aircraft configuration assessment for all-electric commercial aircraft. The focus is on the very long term: technologies that could result in near-silent propulsion and low or no emissions. You can learn more about the overall research areas or read our publications.


Director

Steven Barrett

Energy Initiative

Research Areas

The MIT Energy Initiative is MIT's hub for energy research, education, and outreach, connecting faculty, students, and staff to develop the knowledge, technologies, and solutions that will deliver clean, affordable, and plentiful sources of energy. Their mission is to develop low- and no-carbon solutions that will efficiently, affordably, and sustainably meet global energy needs while minimizing environmental impacts, dramatically reducing greenhouse gas emissions, and mitigating climate change.


Director

Robert Armstrong

Energy-at-Scale Center

Research Areas

MIT’s Energy at Scale Center seeks to address the massive scaling requirements necessary for low-carbon technologies to make a substantial contribution to future global energy needs, in collaboration with industry, government, and nonprofit members. We examine economic, technical, environmental, political, and public opinion barriers for deployment. We explore these risks using our Integrated Global System Modeling (IGSM) framework that combines the Economic Projection and Policy Analysis (EPPA) model, MIT Earth System Model (MESM), as well as a portfolio of impact assessment models that focus on life‑sustaining resources (e.g., managed water systems, crop production, ecosystem/forest services, wind/solar/hydropower, and air quality). These linked computer models allow us to analyze a wide range of development pathways in the global energy, agricultural, transportation, and other key sectors.

Director

Sergey Paltsev

Engineering Systems Laboratory

Research Areas

A part of the MIT Department of Aeronautics and Astronautics, the Engineering Systems Laboratory (ESL) studies the underlying principles and methods for designing complex socio-technical systems that involve a mix of architecture, technologies, organizations, policy issues and complex networked operations. Their focus is on aerospace and other systems critical to society such as product development, manufacturing and large scale infrastructures.


Director

Oliver de Weck

Future Urban Mobility at SMART

Research Areas

The Future Urban Mobility IRG's grand challenge is to develop innovative mobility solutions that simultaneously tackle two opposing objectives: To improve the safety, comfort and time associated with transportation, getting individuals and good where they need to be, and when they need to be there; and to reverse the alarming, unsustainable energy and environmental trends associated with transportation, and devise transportation systems that materially enhance sustainability and societal well-being.


Director

Jinhua Zhao

Humanitarian Supply Chain Lab

Research Areas

The mission of the MIT Humanitarian Supply Chain Lab is to understand and improve the supply chain systems behind public services and private markets to meet human needs. Based within the MIT Center for Transportation and Logistics, the Lab combines expertise in engineering, management, information technology, social science, economics, and other disciplines to drive practical innovation for humanitarian interventions. The lab has a diverse portfolio of projects to improve emergency response during crisis and to enable market development that improves resilience. Our theoretical and applied research is driven by active engagement with the private sector, government agencies, humanitarian, international development, and community organizations on several continents.

Jarrod Goentzel

Institute for Data, Systems and Society (IDSS)

Research Areas

The mission of IDSS is to advance education and research in state-of-the-art analytical methods in information and decision systems, statistics and data science, and the social sciences, and to apply these methods to address complex societal challenges in a diverse set of areas such as finance, energy systems, urbanization, social networks, and health.


Director

Munther Dahleh

Intelligent Transportation Systems Lab

Research Areas

The MIT Intelligent Transportation Systems (ITS) Lab was established in 1990 by Professor Moshe Ben-Akiva. Since its inception, the ITS Lab has conducted numerous studies of transportation systems and developed network modeling and simulation tools. The lab's areas of research include discrete choice and demand modeling techniques, activity-based models, freight transport modeling, and data collection methods for behavioral modeling. Today, lab members are located at MIT's Cambridge campus and its first research center outside of Cambridge: the Singapore-MIT Alliance for Research and Technology (SMART) Centre.


Director

Moshe Ben-Akiva

International Center for Air Transportation

Research Areas

The mission of the MIT International Center for Air Transportation is to undertake research and educational programs which discover and disseminate the knowledge and tools underlying a global air transportation industry driven by new technologies. Airline management, airport security, air transportation economics, fleet scheduling, traffic flow management and airport facilities development represent areas of great interest to the MIT faculty and are of vital importance to international air transportation. ICAT is a physical and intellectual home for these activities. The ICAT, and its predecessors, the Aeronautical Systems Laboratory (ASL) and Flight Transportation Laboratory (FTL), have pioneered several concepts in air traffic management and flight deck automation and displays that are now in common use.


Director

John Hansman

JTL Urban Mobility Lab

Research Areas

The JTL Urban Mobility Lab at MIT brings behavioral science and transportation technology together to shape travel behavior, design mobility systems, and improve transportation policies. They apply this framework to managing automobile ownership and usage, optimizing public transit planning and operation, promoting active modes of walking and cycling, governing autonomous vehicles and shared mobility services, and designing multimodal urban transportation systems.

Director

Jinhua Zhao

Joint Program on the Science and Policy of Global Change

Research Areas

The MIT Joint Program combines scientific research with risk and policy analyses to project the impacts of, and evaluate possible responses to, the many interwoven challenges of global socioeconomic, technological and environmental change. The program also cultivates and educates the next generation of interdisciplinary researchers with the skills to tackle ongoing and emerging complex global challenges.


Director

Ronald G. Prinn, John M. Reilly

Laboratory for Aviation and the Environment

Research Areas

The Laboratory for Aviation and the Environment is a research lab in the MIT Department of Aeronautics & Astronautics. The team is interdisciplinary, covering expertise in Aeronautical, Mechanical and Chemical Engineering, Atmospheric Science and Economics.


Director

Steven Barrett

Laboratory for Information and Decision Systems (LIDS)

Research Areas

The Laboratory for Information and Decision Systems (LIDS) at MIT is an interdepartmental research center committed to advancing research and education in the analytical information and decision sciences, specifically in systems and control, communications and networks, and inference and statistical data processing. Throughout its history, LIDS has been at the forefront of major methodological developments in a wide range of fields, including: telecommunications, information technology, the automotive industry, energy, defense, and human health. Building on past innovation and bolstered by a collaborative atmosphere, LIDS members continue to make breakthroughs that cut across traditional boundaries.


Director

John Tsitsiklis

Lincoln Laboratory - Transportation

Research Areas

The Transportation mission area at Lincoln Lab develops technology to enhance transportation safety and efficiency, supporting government sponsors in several domains, including flight safety and collision avoidance, unmanned aircraft systems, advanced air mobility, air transportation simulation, air traffic control and air traffic management, environmental impact of air traffic, weather sensing for air traffic control, aviation cyber security, and military logistics.

Division Head

Jim Flavin & Jim Kuchar

MIT Digital Supply Chain Transformation

Research Areas

Digital transformation is now a keystone of operational, organizational, and technological structures for companies and supply chains who desire to be competitive in the vision of the future business environment. Our work aims to support organizationally adaptable, technologically compatible, and economically viable transformation for improving performance.
The primary research examines new collaborative paradigms that arise while implementing different new digital technologies in supply chains. Our research domains are digital platforms, multidimensional collaboration, digital capabilities and Artificial Intelligence (AI) in supply chains. Our research fosters more visible, efficient, flexible and resilient networks. We apply quantitative research methodologies in order to assess how data-driven ecosystems create value.

Director

Dr. Maria Jesus Saenz

MIT FreightLab

Research Areas

The MIT FreightLab mission is to drive innovation into the freight transportation industry in order to reduce cost, minimize risk, and increase the level of service. Freight transportation is subject to highly volatile demand and costs that are typically outside of a firm’s ability to control or even influence. This is compounded by a dominant design in terms of how freight is historically procured and managed. FreightLab research focuses on working with companies to develop and implement real-world solutions to these challenges.
FreightLab objectives are to develop innovations in freight transportation planning and operations and drive them into practice. Recently, we have developed methods for forecasting both short term spot-market rates and longer-term contract rates. We are exploring alternative contract forms between shippers and carriers that increase the level of trust in the relationship and yield better results for both parties. Working with a wide range of shippers, carriers, and third-party providers, the freight lab team develops and delivers better ways to design, procure, and manage large-scale freight transportation systems.

Dr. Chris Caplice and Dr. David Correll

MIT Sustainable Supply Chains

Research Areas

The MIT Center for Transportation & Logistics launched Sustainable Supply Chains in 2018 as an umbrella program that brings together our sustainability research, education, and outreach. Our goal is to connect research outcomes to practical settings, enabling companies and stakeholders to leverage supply chains as a beneficial force to reaching global sustainable development goals. We seek to improve visibility of supply chain impacts and develop strategies to help reduce them, so companies can better address consumer, political, and shareholder concerns. The lab has a wide portfolio of research projects including supply chain transparency, sustainable logistics, sustainable procurement, consumer purchasing behavior, and on. The research is inclusive of issues across the supply chain and spans social, environmental, and economic impact areas.

Director

Alexis Bateman

Marine Robotics Group

Research Areas

The Marine Robotics Group, headed by Prof. John J. Leonard, is part of CSAIL at MIT. Our projects are centered around the problems of navigation and mapping for autonomous mobile robots operating in underwater and terrestrial environments.

Director

John J. Leonard

Megacity Logistics Lab

Research Areas

The Megacity Logistics Lab brings together business, logistics, and urban planning perspectives to develop appropriate technologies, infrastructures, and policies for sustainable urban logistics operations. Their work aims to promote new urban delivery models, from unattended home delivery solutions to smart locker systems, to click & collect services, to drone delivery. They are pushing the limits of existing logistics network designs as future city logistics networks need to support omni-channel retail models, smaller store formats, increased intensity of deliveries, coordinate multiple transshipment points, engage a wider range of vehicle technologies - including electric and autonomous vehicles - and support complex inventory balancing and deployment strategies.


Director

Matthias Winkenbach

Mobility Systems Center

Research Areas

The Mobility Systems Center, an MIT Energy Initiative Low-Carbon Energy Center, brings together MIT's extensive expertise in mobility research to understand current and future trends in global passenger and freight mobility. Approaching mobility from a socio-technical perspective, we identify key challenges, understand potential trends, and analyze the societal and environmental impact of new mobility solutions. Through developing, maintaining, and applying a set of state-of-the-art scientific tools for the mobility sector, the Center aims to assess future mobility transformations from a technological, economic, environmental, and socio-political perspective. Executive Director: Randall Field

Director

William Green & Jinhua Zhao

Operations Research Center

Research Areas

The mission of the Operations Research Center is to impact the world by educating students in the fields of Operations Research and Analytics who will become leaders in either academia or industry, generate new knowledge via research that will be used in educating future generations of students around the world and impact society via research by solving some of the world's most significant problems.


Director

Patrick Jaillet & Georgia Perakis

Quest for Intelligence

Research Areas

MIT Quest addresses two fundamental questions: How does human intelligence work, in engineering terms? And how can we use our understanding of human intelligence to build smarter machines for the benefit of society? As part of our mission, we are developing customized AI tools for non-AI researchers, which could accelerate progress in many fields. We see an opportunity to achieve a deeper understanding of intelligence through the kind of basic research that leads to unexpected breakthroughs. We aspire for our new knowledge and newly built tools to serve the public good, in our nation and around the world.

Director

James DiCarlo; Aude Oliva; Nicholas Roy

Resilient Infrastructure Systems Lab

Research Areas

The Resilient Infrastructure Systems Lab seeks to improve the robustness and security of critical infrastructure systems by developing tools to detect and respond to incidents, both random and adversarial and by designing incentive mechanisms for efficient infrastructure management. They are working on the problems of cyber-physical security, failure diagnostics and incident response, network monitoring and control, and demand management in real-world infrastructures. They mainly focus on cyber-physical infrastructure systems for electric power, transportation, and urban water and natural gas networks.


Director

Saurabh Amin

Robust Robotics Group

Research Areas

The research goals of the Robust Robotics Group are to build unmanned vehicles that can fly without GPS through unmapped indoor environments, robots that can drive through unmapped cities, and to build social robots that can quickly learn what people want without being annoying or intrusive. Such robots must be able to perform effectively with uncertain and limited knowledge of the world, be easily deployed in new environments and immediately start autonomous operations with no prior information. They specifically focus on problems of planning and control in domains with uncertain models, using optimization, statistical estimation and machine learning to learn good plans and policies from experience.


Director

Nick Roy

Senseable City Lab

Research Areas

The real-time city is real! As layers of networks and digital information blanket urban space, new approaches to the study of the built environment are emerging. The way we describe and understand cities is being radically transformed, as are the tools we use to design them. The mission of the Senseable City Laboratory, a research initiative at MIT, is to anticipate these changes and study them from a critical point of view.


Director

Carlo Ratti

bottom of page